Atmospheric Chemistry of the Z and E Isomers of CF₃CF=CHF; Kinetics, Mechanisms, and Products of Gas-Phase Reactions with Cl Atoms, OH Radicals, and O₃

M. D. Hurley,* J. C. Ball, and T. J. Wallington

Systems Analytics & Environmental Sciences Department, Ford Motor Company, Mail Drop SRL-3083, Dearborn, Michigan 48121-2053

Received: July 9, 2007; In Final Form: July 27, 2007

Smog chamber/FTIR techniques were used to study the atmospheric chemistry of the Z and E isomers of CF₃CF=CHF, which we refer to as CF₃CF=CHF(Z) and CF₃CF=CHF(E). The rate constants $k(C1 + CF_3-CF=CHF(Z)) = (4.36 \pm 0.48) \times 10^{-11}$, $k(OH + CF_3CF=CHF(Z)) = (1.22 \pm 0.14) \times 10^{-12}$, and $k(O_3 + CF_3CF=CHF(Z)) = (1.45 \pm 0.15) \times 10^{-21}$ cm³ molecule⁻¹ s⁻¹ were determined for the Z isomer of CF₃-CF=CHF in 700 Torr air diluent at 296 ± 2 K. The rate constants $k(C1 + CF_3CF=CHF(E)) = (5.00 \pm 0.56) \times 10^{-11}$, $k(OH + CF_3CF=CHF(E)) = (2.15 \pm 0.23) \times 10^{-12}$, and $k(O_3 + CF_3CF=CHF(E)) = (1.98 \pm 0.15) \times 10^{-20}$ cm³ molecule⁻¹ s⁻¹ were determined for the C isomer of CF₃-CF=CHF in 700 Torr air diluent at 296 ± 2 K. The rate constants $k(O_3 + CF_3CF=CHF(E)) = (1.98 \pm 0.15) \times 10^{-20}$ cm³ molecule⁻¹ s⁻¹ were determined for the E isomer of CF₃CF=CHF(E)) = (1.98 \pm 0.15) \times 10^{-20} cm³ molecule⁻¹ s⁻¹ were determined for the E isomer of CF₃CF=CHF in 700 Torr air diluent at 296 ± 2 K. Both the Cl-atom and OH-radical-initiated atmospheric oxidation of CF₃CF=CHF give CF₃C(O)F and HC(O)F in molar yields indistinguishable from 100% for both the Z and E isomer. CF₃CF=CHF(Z) has an atmospheric lifetime of approximately 18 days and a global warming potential (100 year time horizon) of approximately 6. CF₃CF=CHF(E) has an atmospheric lifetime of approximately 10 days and a global warming potential (100 year time horizon) of approximately 3. CF₃CF=CHF has a negligible global warming potential and will not make any significant contribution to radiative forcing of climate change.

Introduction

Recognition of the adverse environmental impact of chlorofluorocarbon (CFC) release into the atmosphere^{1,2} has led to an international effort to replace these compounds with environmentally acceptable alternatives. Unsaturated fluorinated hydrocarbons are a class of compounds which have been developed to replace CFCs and saturated hydrofluorocarbons as refrigerants in air-conditioning units. Prior to their large-scale industrial use, an assessment of the atmospheric chemistry and environmental impact of these compounds is needed. To address this need, the atmospheric chemistry of $CF_3CF=CHF$ was investigated. $CF_3CF=CHF$ exists in two isomeric forms: Z and E.

Smog chamber/FTIR techniques were used to determine the following properties for the Z and E isomers of CF₃CF=CHF: (i) kinetics of reaction with chlorine atoms, (ii) kinetics of reaction with hydroxyl radicals, (iii) kinetics of reaction with ozone, (iv) products formed during the Cl-atom-initiated oxidation, (v) products formed during the OH-radical-initiated oxidation, and (vi) atmospheric implications. The Z isomer will be referred to as CF₃CF=CHF(Z) while the E isomer will be referred to as CF₃CF=CHF(E).

Experimental Section

Experiments were performed in a 140-L Pyrex reactor interfaced to a Mattson Sirius 100 FTIR spectrometer.³ The reactor was surrounded by 22 fluorescent blacklamps (GE F40T12BLB) which were used to photochemically initiate the experiments. Chlorine atoms were produced by photolysis of molecular chlorine.

$$Cl_2 + hv \rightarrow Cl + Cl$$
 (1)

OH radicals were produced by photolysis of CH₃ONO in the presence of NO in air.

$$CH_3ONO + hv \rightarrow CH_3O + NO$$
 (2)

$$CH_3O + O_2 \rightarrow HO_2 + HCHO$$
 (3)

$$HO_2 + NO \rightarrow OH + NO_2$$
 (4)

Relative rate techniques were used to measure the rate constant of interest relative to a reference reaction whose rate constant has been established previously. The relative rate method is a well-established technique for measuring the reactivity of Cl atoms and OH radicals with organic compounds.⁴ Kinetic data are derived by monitoring the loss of CF₃-CF=CHF relative to one or more reference compounds. The decays of CF₃-CF=CHF and the reference are then plotted using the following expression:

$$\ln\left(\frac{[\text{Reactant}]_0}{[\text{Reactant}]_t}\right) = \frac{k_{\text{Reactant}}}{k_{\text{Reference}}} \ln\left(\frac{[\text{Reference}]_0}{[\text{Reference}]_t}\right)$$
(I)

where $[Reactant]_0$, $[Reactant]_t$, $[Reference]_0$, and $[Reference]_t$ are the concentrations of CF₃CF=CHF and the reference compound at times "0" and "t", and $k_{Reactant}$ and $k_{Reference}$ are

^{*} Corresponding author. Fax: 313-322-7044. E-mail: mhurley3@ford.com.

Figure 1. Loss of CF₃CF=CHF(Z) vs C_2H_4 (triangles up) and C_2H_2 (circles) and the loss of CF₃CF=CHF(E) vs C_2H_4 (triangles down) and C_2H_2 (diamonds) in the presence of Cl atoms in 700 Torr air at 296 \pm 2 K. Open and closed symbols represent different experiments.

Figure 2. Loss of CF₃CF=CHF(Z) vs C_2H_4 (triangles up) and C_2H_2 (circles) and the loss of CF₃CF=CHF(E) vs C_2H_4 (triangles down) and C_2H_2 (diamonds) in the presence of OH radicals in 700 Torr air at 296 \pm 2 K. Open and closed symbols represent different experiments.

the rate constants for reactions of Cl atoms or OH radicals with the CF₃CF=CHF and the reference compound. Plots of Ln-([Reactant]₀/[Reactant]₁) versus Ln([Reference]₀/[Reference]₁) should be linear, pass through the origin and have a slope of $k_{Reactant}/k_{Reference}$. The kinetics of the O₃ reaction were studied using an absolute rate method in which the pseudo first-order loss of CF₃CF=CHF was measured in the presence of excess O₃.

 O_3 was produced from O_2 via silent electrical discharge using a commercial O_3 ozonizer. CH₃ONO was synthesized by the dropwise addition of concentrated sulfuric acid to a saturated solution of NaNO₂ in methanol. CF₃CF=CHF(Z) and CF₃CF= CHF(E) were provided by INEOS Fluor at a purities of 99.38% and 99.96%, respectively. Other reagents were obtained from commercial sources. Experiments were conducted in 700 Torr total pressure of O_2/N_2 diluent at 296 ± 2 K. Concentrations of reactants and products were monitored by FTIR spectroscopy. IR spectra were derived from 32 co-added interferograms with a spectral resolution of 0.25 cm⁻¹ and an analytical path length of 27.1 m. To check for unwanted loss of reactants and reference compounds via heterogeneous reactions, reaction mixtures were left to stand in the chamber for 60 min. There was no observable (<2%) loss of any of the reactants or products in the present work. Unless stated otherwise, quoted uncertainties are 2 standard deviations from least-squares regressions.

Results and Discussion

Kinetics of the Cl + CF₃CF=CHF Reaction. The rate of reaction 5 was measured relative to reactions 6 and 7 for the Z and E isomers:

$$Cl + CF_3CF = CHF \rightarrow products$$
 (5)

$$Cl + C_2H_4 \rightarrow products$$
 (6)

$$Cl + C_2H_2 \rightarrow products$$
 (7)

For the Z isomer, reaction mixtures consisted of 6.8-9.7 mTorr CF₃CF=CHF(Z), 100 mTorr Cl₂, and either 4.4-7.1 mTorr C₂H₄ or 2.2-2.9 mTorr C₂H₂ in 700 Torr of air diluent. For the E isomer, reaction mixtures consisted of 9.3-13.2 mTorr CF₃CF=CHF(E), 100 mTorr Cl₂, and either 4.4-4.6 mTorr C₂H₄ or 1.6-3.1 mTorr C₂H₂ in 700 Torr air diluent. Figure 1 shows the loss of CF₃CF=CHF plotted versus the loss of the reference compounds. Linear least-squares analysis of the data in Figure 1 gives the results shown in Table 1. For each isomer, the values of k_5 obtained using the two different references are indistinguishable within the experimental uncertainties. The final value is the average of the individual determinations together with error limits which encompass the extremes of the individual determinations; $k(Cl + CF_3CF=CHF(Z)) = (4.36 \pm 0.48) \times$ $10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and } k(\text{Cl} + \text{CF}_3\text{CF}=\text{CHF}(\text{E})) = (5.00)^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and } k(\text{Cl} + \text{CF}_3\text{CF}=\text{CHF}(\text{E})) = (5.00)^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and } k(\text{Cl} + \text{CF}_3\text{CF}=\text{CHF}(\text{E})) = (5.00)^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and } k(\text{Cl} + \text{CF}_3\text{CF}=\text{CHF}(\text{E})) = (5.00)^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ molecule}^{-1} \text{ s}^{-1} \text{ molecule}^{-1} \text{ s}^{-1} \text{ molecule}^{-1} \text{ s}^{-1} \text{ molecule}^{-1} \text{$ \pm 0.56) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹.

Kinetic data for the reactions of chlorine atoms with propene and fluorinated propenes are presented in Table 3. The reaction of chlorine atoms with propene proceeds primarily via electrophilic addition to the >C=C< double bond. Fluorine is an electron-withdrawing substituent and would be expected to lower the reactivity of chlorine atoms toward substituted propenes. Consistent with this expectation, inspection of Table 3 reveals a trend of generally decreasing reactivity with increasing number of electron-withdrawing fluorine substituents. Also presented in Table 3 are kinetic data for the reactions of chlorine atoms with the Z and E isomers of 2-butene. For both CF₃CF=CHF and 2-butene, the reactivity toward chlorine atoms is comparable for the Z and E isomers.

Kinetics of the OH + CF₃CF=CHF Reaction. The rate of reaction 8 was measured relative to reactions 9 and 10 for the Z and E isomers:

$$OH + CF_3 CF = CHF \rightarrow products$$
(8)

$$OH + C_2 H_4 \rightarrow products \tag{9}$$

$$OH + C_2H_2 \rightarrow products$$
 (10)

TABLE 1: Results of the Relative Rate Constant Experiments To Determine $k(C + CF_3CF = CHF)^a$

$\begin{array}{ c c c c c c c c } sample & reference & k_{sample}/k_{reference} & k_{reference} & k(Cl + CF_3CF=CHF) & k_{avg}(Cl + CF_3CF=CHF) \\ \hline CF_3CF=CHF(Z) & C_2H_4 & 0.40 \pm 0.04 & 1.1 \times 10^{-1018} & (4.40 \pm 0.44) \times 10^{-11} \\ CF_3CF=CHF(Z) & C_2H_2 & 0.83 \pm 0.08 & 5.2 \times 10^{-1118} & (4.32 \pm 0.41) \times 10^{-11} \\ CF_3CF=CHF(E) & C_2H_4 & 0.45 \pm 0.04 & 1.1 \times 10^{-1018} & (4.95 \pm 0.45) \times 10^{-11} \\ CF_3CF=CHF(E) & C_2H_2 & 0.97 \pm 0.10 & 5.2 \times 10^{-1118} & (5.04 \pm 0.52) \times 10^{-11} \\ \hline \end{array}$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sample	reference	$k_{\text{sample}}/k_{\text{reference}}$	k _{reference}	$k(Cl + CF_3CF = CHF)$	$k_{avg}(Cl + CF_3CF = CHF)$
	$CF_{3}CF=CHF(Z)$ $CF_{3}CF=CHF(Z)$ $CF_{3}CF=CHF(E)$ $CF_{3}CF=CHF(E)$	$\begin{array}{c} C_{2}H_{4} \\ C_{2}H_{2} \\ C_{2}H_{4} \\ C_{2}H_{2} \end{array}$	$\begin{array}{c} 0.40 \pm 0.04 \\ 0.83 \pm 0.08 \\ 0.45 \pm 0.04 \\ 0.97 \pm 0.10 \end{array}$	$\begin{array}{c} 1.1 \times 10^{-1018} \\ 5.2 \times 10^{-1118} \\ 1.1 \times 10^{-1018} \\ 5.2 \times 10^{-1118} \end{array}$	$\begin{array}{c} (4.40\pm0.44)\times10^{-11}\\ (4.32\pm0.41)\times10^{-11}\\ (4.95\pm0.45)\times10^{-11}\\ (5.04\pm0.52)\times10^{-11} \end{array}$	$(4.36 \pm 0.48) \times 10^{-11}$ $(5.00 \pm 0.56) \times 10^{-11}$

^{*a*} Rate constant units are cm³ molecule⁻¹ s⁻¹.

TABLE 2: Results of the Relative Rate Constant Experiments To Determine $k(OH + CF_3CF=CHF)^a$

sample	reference	$k_{\text{sample}}/k_{\text{reference}}$	k _{reference}	$k(OH + CF_3CF = CHF)$	$k_{avg}(OH + CF_3CF = CHF)$
$\begin{array}{c} CF_3CF=CHF(Z)\\ CF_3CF=CHF(Z)\\ CF_3CF=CHF(E)\\ CF_3CF=CHF(E)\\ \end{array}$	$\begin{array}{c} C_2 H_4 \\ C_2 H_2 \\ C_2 H_4 \\ C_2 H_2 \end{array}$	$\begin{array}{c} 0.16 \pm 0.01 \\ 1.54 \pm 0.15 \\ 0.27 \pm 0.03 \\ 2.74 \pm 0.27 \end{array}$	$\begin{array}{l} 7.9 \times 10^{-12} {}^{18} \\ 7.8 \times 10^{-13} {}^{18} \\ 7.9 \times 10^{-12} {}^{18} \\ 7.8 \times 10^{-13} {}^{18} \end{array}$	$\begin{array}{c} (1.24\pm0.08)\times10^{-12}\\ (1.20\pm0.12)\times10^{-12}\\ (2.16\pm0.22)\times10^{-12}\\ (2.14\pm0.21)\times10^{-12} \end{array}$	$(1.22 \pm 0.14) \times 10^{-12}$ $(2.15 \pm 0.23) \times 10^{-12}$

^{*a*} Rate constant units are cm³ molecule⁻¹ s⁻¹.

TABLE 3: Rate Constants (cm³ molecule⁻¹ s⁻¹) for Reactions of Cl, OH, and O₃ with CF₃CF=CHF, Analogous Fluorinated Propenes, and 2-Butene Measured at 296 \pm 2 K^a

compound	$k_{ m Cl}$	k _{OH}	$k_{ m O_3}$
CH ₃ CH=CH ₂	2.44×10^{-10}	2.6×10^{-11} ¹⁹	1.0×10^{-17} ¹⁹
$CF_3CH=CH_2$	9.07×10^{-11} ²⁰	1.45×10^{-12} 7,20	3.5×10^{-19} ²⁰
$CF_3CF=CH_2$	6.9×10^{-11} ²¹	1.06×10^{-12} ²¹	2.8×10^{-20} ²¹
CF ₃ CH=CHF	4.64×10^{-11} ⁵	9.25×10^{-13} ⁵	2.81×10^{-21} ⁵
$CF_3CF = CHF(Z)$	4.36×10^{-11}	1.22×10^{-12}	1.45×10^{-21}
$CF_3CF = CHF(E)$	5.00×10^{-11}	2.15×10^{-12}	1.98×10^{-20}
$CF_3CF=CF_2$	2.7×10^{-11} ²²	$2.4 \times 10^{-127,22-24}$	6.2×10^{-22}
$CH_3CH=CHCH_3(Z)$ (cis)	$3.7 \times 10^{-10.26,27}$	$5.5 \times 10^{-1128-31}$	$1.4 \times 10^{-16 32 - 35}$
$CH_3CH=CHCH_3(E)$ (trans)	$3.4 \times 10^{-1026,27}$	$6.5 \times 10^{-1128-31}$	$2.3 imes 10^{-16 32 - 35}$

^{*a*} Where multiple determinations exist, the value given is the average of the determinations.

For the Z isomer, reaction mixtures consisted of 6-8.2 mTorr CF₃CF=CHF(Z), 100-200 mTorr CH₃ONO, and either 3.8-7.8 mTorr C₂H₄ or 1.8-3.5 mTorr C₂H₂ in 700 Torr total pressure air diluent. For the E isomer, reaction mixtures consisted of 7.3-9.7 mTorr CF₃CF=CHF(E), 100-105 mTorr CH₃ONO, and either 2.94-5.15 mTorr C₂H₄ or 2.1-3.8 mTorr C₂H₂ in 700 Torr total pressure air diluent. Figure 2 shows the loss of CF₃CF=CHF plotted versus loss of the reference compounds. Linear least-squares analysis of the data in Figure 2 gives the results shown in Table 2. For each isomer, the values of k_8 obtained using the two different references are indistinguishable within the experimental uncertainties. The final value is the average of the individual determinations together with error limits which encompass the extremes of the individual determinations: $k(OH + CF_3CF = CHF(Z)) = (1.22 \pm 0.14) \times$ 10^{-12} cm³ molecule⁻¹ s⁻¹ and $k(OH + CF_3CF=CHF(E)) =$ $(2.15 \pm 0.23) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$

Kinetic data for the reactions of hydroxyl radicals with propene and fluorinated propenes are presented in Table 3. The reaction of hydroxyl radicals with propene proceeds mainly via electrophilic addition to the >C=C< double bond. The presence of electron-withdrawing substituents such as fluorine would be expected to lower the reactivity of the molecule toward OH. Inspection of Table 3 reveals that the reactivity of propene is greater than that of the fluorinated propenes and there is a trend toward lower reactivity with increasing fluorine substitution; however, the most highly fluorinated compounds of the series are significantly more reactive than the less fluorinated propenes. It has been suggested⁵ that hydrogen bonding between OH and fluorine leads to the observed enhancement of the reactivity of OH radicals with highly fluorinated propenes. Computational work would be of interest to confirm or refute this suggestion. Also presented in Table 3 are kinetic data for the reaction of OH radicals with the Z and E isomers of 2-butene. For 2-butene, the reactivity of the E isomer is 18% greater than that of the Z isomer. For $CF_3CF=CHF$, the reactivity of the E isomer is 80%

greater than that of the Z isomer. The presence of fluorine substituents appears to exaggerate the difference in the reactivity of the two isomers toward OH radicals.

Kinetics of the $O_3 + CF_3CF = CHF$ Reaction. The kinetics of reaction 11 were studied by observing the decay of $CF_3CF =$ CHF(Z) when exposed to ozone in the reaction chamber.

$$CF_3CF = CHF(Z) + O_3 \rightarrow products$$
 (11)

Reaction mixtures consisted of $15.0-18.5 \text{ mTorr } \text{CF}_3\text{CF}=$ CHF(Z), $14-25 \text{ mTorr cyclohexane, and <math>463-1759 \text{ mTorr } O_3$ in 700 Torr air diluent. Cyclohexane was added to avoid potential problems associated with the loss of CF₃CF=CHF-(Z) via reaction with any OH radicals formed in reaction 11. Variation of the [cyclohexane]/[CF₃CF=CHF(Z)] ratio had no discernible effect on the observed decay of CF₃CF=CHF(Z), suggesting that loss via reaction with OH radicals is not a significant complication. The loss of CF₃CF=CHF(Z) followed pseudo first-order kinetics in all experiments (see insert in Figure 3). Figure 3 shows a plot of the pseudo first-order loss of CF₃-CF=CHF(Z) versus O₃ concentration. The line through the data gives $k_{11} = (1.45 \pm 0.15) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

The kinetics of reaction 12 were studied by observing the decay of $CF_3CF=CHF(E)$ when exposed to ozone in the reaction chamber.

$$CF_3CF = CHF(E) + O_3 \rightarrow products$$
 (12)

Reaction mixtures consisted of 14.7-18.6 mTorr CF₃CF= CHF(E), 15-27 mTorr cyclohexane, and 436-2049 mTorr O₃ in 700 Torr air diluent. Variation of the [cyclohexane]/[CF₃-CF=CHF(E)] ratio had no discernible effect on the observed decay of CF₃CF=CHF(E), suggesting that loss via reaction with OH radicals is not a significant complication. The loss of CF₃-CF=CHF(E) followed pseudo first-order kinetics in all experiments (see insert in Figure 4). Figure 4 shows a plot of the

Figure 3. Pseudo first-order loss of CF₃CF=CHF(Z) versus O₃ concentration. The insert shows typical decay plots for CF3CF=CHF-(Z) when exposed to 465 mTorr (circle), 648 mTorr (triangle up), 1273 mTorr (triangles down) or 1759 mTorr (diamonds) O₃.

Figure 4. Pseudo first-order loss of CF₃CF=CHF(E) versus O₃ concentration. The insert shows typical decay plots for CF₃CF=CHF-(E) when exposed to 436 mTorr (circle), 828 mTorr (triangle up), 1308 mTorr (triangles down) or 2047 mTorr (diamond) O₃.

pseudo first-order loss of CF₃CF=CHF(E) versus O₃ concentration. The line through the data gives $k_{12} = (1.98 \pm 0.15) \times$ $10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

This result is compared with the reported reactivity of ozone toward propene and other fluoropropenes in Table 3. As seen from Table 3, the results from the present work are consistent with the existing database showing a successive decrease in reactivity on increasing fluorination. In their reactions with O₃, CF₃CF=CHF(Z) and CF₃CF=CHF(E) are less reactive than their non-fluorinated counterpart by factors of 6900 and 505, respectively. Reaction occurs by electrophilic addition of O₃

Figure 5. Infrared spectra acquired (A) before and (B) after a 2 s irradiation of a mixture of 6.8 mTorr CF₃CF=CHF(Z) and 9.9 mTorr Cl₂ in 700 Torr air. Panels (C) and (D) are reference spectra of CF₃C-(O)F and HC(O)F.

across the >C=C< double bond. When compared with Cl atoms and OH radicals, O₃ has the lowest reactivity and is therefore most sensitive to the presence of the electronwithdrawing fluorine substituents. Also presented in Table 3 are kinetic data for the reaction of ozone with the Z and E isomers of 2-butene. For 2-butene, the E isomer is 1.6 times more reactive toward ozone than the Z isomer. For CF₃CF= CHF, the E isomer is 13.6 times more reactive toward ozone than the Z isomer. The presence of fluorine substituents appears to exaggerate the difference in the reactivity of the two isomers toward ozone.

Products and Mechanism of Cl-Atom-Initiated Oxidation of CF₃CF=CHF in the Absence and Presence of NO. The mechanism of Cl-atom-initiated oxidation of CF3CF=CHF was investigated by irradiating mixtures consisting of 6.8-10.1 mTorr CF₃CF=CHF(Z), 7.3-9.1 mTorr CF₃CF=CHF(E), 99-101 mTorr Cl₂, and 0-38.1 mTorr NO in 10-700 Torr oxygen. Nitrogen was added as needed to provide 700 Torr total pressure. Figure 5, panels A and B, show spectra acquired before and after a 2 s irradiation of a mixture of 6.8 mTorr CF₃CF=CHF-(Z) and 9.9 mTorr Cl₂ in 700 Torr air. The consumption of CF₃CF=CHF(Z) in this experiment was 17%. Comparison of the IR features in panel B with reference spectra of CF₃C(O)F and HC(O)F in panels C and D shows the formation of these compounds. $CF_3C(O)F$ and HC(O)F were the only products observed from the Cl-initiated oxidation of either isomer. Figure 6 shows the formation of CF₃C(O)F and HC(O)F versus the loss of CF₃CF=CHF for experiments in 10 Torr O₂, 140 Torr

Figure 6. Formation of $CF_3C(O)F$ and HC(O)F vs loss of $CF_3CF=$ CHF following UV irradiation of $CF_3CF=CHF/Cl_2$ mixtures in 140 Torr O₂ (circles), 10 Torr O₂ (triangles up), 700 Torr O₂ (triangles down), and 140 Torr O₂ with NO (diamonds). Closed symbols are for the Z isomer of $CF_3CF=CHF$, and open symbols are for the E isomer of $CF_3CF=CHF$.

 O_2 in the absence of NO, 140 Torr O_2 in the presence of NO, and 700 Torr O_2 for both isomers. As seen from Figure 6, there were no discernible differences in the yields of CF₃C(O)F and HC(O)F in experiments performed with and without added NO. Linear least-squares analysis of the composite data sets gives molar yields of 98 ± 4% CF₃C(O)F and 100 ± 5% HC(O)F. Quoted uncertainties are two standard deviations from the regression analyses.

The reaction of Cl atoms with both isomers of $CF_3CF=CHF$ proceeds via addition to give two different substituted alkyl radicals:

$$CF_3CF = CHF + Cl \rightarrow CF_3CFClC \cdot HF$$
 (13a)

$$CF_3CF = CHF + Cl \rightarrow CF_3C \cdot FCHFCl$$
 (13b)

which, in the presence of O₂, are expected to react to give the corresponding peroxy radicals:

$$CF_3CFClC \cdot HF + O_2 \rightarrow CF_3CFClCOO \cdot HF$$
 (14)

$$CF_3C \cdot FCHFCl + O_2 \rightarrow CF_3COO \cdot FCHFCl$$
 (15)

No information is available concerning the branching ratio k_{13a}/k_{13b} , and we will assume that both radicals are formed. Peroxy radicals react rapidly with NO,⁶ and for those experiments where NO was present the sole fate of the peroxy radicals will be reaction with NO. Such reactions proceed via two channels, giving alkoxy radicals as major products and alkyl nitrates as minor products; however, in the present experiments

Figure 7. Formation of $CF_3C(O)F$ and HC(O)F vs loss of $CF_3CF=$ CHF following UV irradiation of $CF_3CF=$ CHF/CH₃ONO mixtures in 140 Torr O₂. Closed symbols are for the Z isomer of $CF_3CF=$ CHF, and open symbols are for the E isomer of $CF_3CF=$ CHF.

there was no evidence of nitrate formation, which is consistent with previous work that showed low nitrate yields from the reaction of halogenated alkyl peroxy radicals with NO.⁶ Whether by peroxy radical self-reactions, cross-reactions, or by peroxy radical and NO reactions, two alkoxy radicals are produced: CF₃CFCICO•HF and CF₃CO•FCHFCI. From the fact that the observed CF₃C(O)F and HC(O)F and products account for 100% of the loss of CF3CF=CHF and the absence of other products, we conclude that the fate of CF₃CFCICO•HF and CF₃CO• FCHFCI radicals is decomposition via C–C bond scission:

 $CF_3CFClCO \cdot HF \rightarrow CF_3C \cdot FCl + HC(O)F$ (16)

$$CF_{3}CO \cdot FCHFCI \rightarrow CF_{3}C(O)F + C \cdot HFCl$$
 (17)

The atmospheric fate of CF_3C ·FCl and C·HFCl radicals is addition of O₂ to give a peroxy radical, reaction with RO₂ or NO to give an alkoxy radical, and elimination of a Cl atom to give either $CF_3C(O)F$ or HC(O)F.

Products and Mechanism of OH-Radical-Initiated Oxidation of CF₃CF=CHF. The mechanism of OH-radical-initiated oxidation of CF₃CF=CHF was investigated by irradiating mixtures consisting of 7.6–8.8 mTorr of CF₃CF=CHF(Z), 6.2– 7.9 mTorr CF₃CF=CHF(E), and 99–105 mTorr CH₃ONO in 140 Torr oxygen. Figure 8 shows the formation of CF₃C(O)F and HC(O)F versus the loss of CF₃CF=CHF for experiments in 140 Torr O₂ for both isomers. Linear least-squares analysis of the composite data sets gives molar yields of 94 ± 8% CF₃C-(O)F and 104 ± 9% HC(O)F. Quoted uncertainties are two standard deviations from the regression analyses.

Figure 8. IR spectrum of the Z and E isomers of CF₃CF=CHF.

The reaction of OH radicals with both isomers of $CF_3CF=$ CHF proceeds via addition to give two different substituted alkyl radicals:

 $CF_3CF = CHF + OH \rightarrow CF_3CFOHC \cdot HF$ (18a)

$$CF_3CF = CHF + OH \rightarrow CF_3C \cdot FCHFOH$$
 (18b)

which, in the presence of O_2 , are expected to react to give the corresponding peroxy radicals.

$$CF_3CFOHC \cdot HF + O_2 \rightarrow CF_3CFOHCOO \cdot HF$$
 (19)

$$CF_3C \cdot FCHFOH + O_2 \rightarrow CF_3COO \cdot FCHFOH$$
 (20)

There is no available information concerning the branching ratio k_{18a}/k_{18b} , and we will assume that both radicals are formed. Since peroxy radicals react rapidly with NO⁶ and in the present experiments there was no evidence of nitrate formation, two alkoxy radicals are produced CF₃CFOHCO•HF and CF₃CO• FCHFOH. From the fact that the observed CF₃C(O)F and HC-(O)F and products account for 100% of the loss of CF₃CF= CHF and the absence of other products, we conclude that the fate of CF₃CFOHCO•HF and CF₃CO•FCHFOH radicals is decomposition via C−C bond scission:

$$CF_3CFOHCO \cdot HF \rightarrow CF_3C \cdot FOH + HC(O)F$$
 (21)

$$CF_3CO \cdot FCHFOH \rightarrow CF_3C(O)F + C \cdot HFOH$$
 (22)

The atmospheric fate of $CF_3C \cdot FOH$ and $C \cdot HFOH$ radicals is reaction with O_2 to give HO_2 and either $CF_3C(O)F$ or HC-(O)F:

$$CF_3C \cdot FOH + O_2 \rightarrow CF_3C(O)F + HO_2$$
 (23)

$$C \cdot HFOH + O_2 \rightarrow HC(O)F + HO_2$$
(24)

Atmospheric Lifetime, Global Warming Potential, and Environmental Impacts. CF₃CF=CHF will not undergo photolysis⁷ and is not expected to be removed effectively by either wet or dry deposition. Cl atoms are not present in the atmosphere in sufficient quantity to impact the lifetime of $CF_3CF=CHF$. Reaction with OH and O_3 are the expected loss mechanisms for $CF_3CF=CHF$.

The values of $k(OH + CF_3CF = CHF)$ and $k(O_3 + CF_3CF =$ CHF) measured in the present work can be used to provide an estimate of the atmospheric lifetime of CF₃CF=CHF. Scaling $k(OH + CF_3CF = CHF(Z))$ and $k(OH + CF_3CF = CHF(E))$ to $k(OH + CH_3CCl_3) = 1.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-18}$ and assuming a lifetime of 6.1 years for CH₃CCl₃⁹ provides an estimate for the lifetime of CF₃CF=CHF(Z) and CF₃CF=CHF-(E) with respect to reaction with OH radicals in the atmosphere of approximately 18 days and 10 days, respectively. Ideally, such scaling would be conducted using OH rate constants at 272 K; however, such data are not available for CF₃CF=CHF. OH radicals react with CH₃CCl₃ and CF₃CF=CHF via different mechanisms. Reaction with CH₃CCl₃ proceeds via hydrogen atom abstraction and has a rate which decreases by approximately 40% as the temperature is decreased from 298 to 272 K.⁸ In contrast, the reaction of OH radicals with CF₃CF= CHF proceeds via an addition mechanism, and the rate of this reaction is not expected to decrease with temperature. Therefore, the lifetimes with respect to OH radicals calculated above are probably somewhat over-estimated, but this does not make a material impact on the following conclusions. Our value of $k(O_3)$ + CF₃CF=CHF(Z)) and $k(O_3 + CF_3CF=CHF(E))$ can be combined with the global background O3 concentration of approximately 35 ppb¹⁰ to provide an estimated lifetime with respect to reaction with ozone of 25 years and 1.9 years for $CF_3CF=CHF(Z)$ and $CF_3CF=CHF(E)$, respectively. We conclude that the atmospheric lifetime of CF₃CF=CHF is determined by its reaction with OH and will proceed with lifetimes of approximately 18 days and 10 days for CF₃CF=CHF(Z) and $CF_3CF=CHF(E)$, respectively. Finally, the approximate nature of this lifetime estimate is emphasized; the average daily concentration of OH radicals varies significantly with both location and season.¹¹ The quoted lifetime is a global average; local lifetimes could be significantly shorter or longer.

The IR spectra of the Z and E isomers of CF₃CF=CHF measured in the present work are shown in Figure 8. CF₃CF= CHF(Z) has IR features at 728, 830, 862, 1075, 1182, 1214, 1323, 1398, and 1742 cm⁻¹. CF₃CF=CHF(E) has IR features at 846, 1136, 1178, 1223, 1267, 1412, and 1726. The integrated IR absorption cross sections of CF₃CF=CHF(Z) (700-1800 cm^{-1}) and CF₃CF=CHF(E) (800-1800 cm^{-1}) are indistinguishable: $(1.86 \pm 0.18) \times 10^{-16}$ cm molecule⁻¹. There are no literature IR data for CF₃CF=CHF to compare with our result. Using the method outlined by Pinnock et al.,¹² the IR spectra of CF₃CF=CHF(Z) and CF₃CF=CHF(E) shown in Figure 8 and the IR spectrum of CFC-11¹³ we calculate instantaneous forcings for CF₃CF=CHF(Z), CF₃CF=CHF(E), and CFC-11 of 0.25, 0.24, and 0.26 W m⁻² ppb⁻¹, respectively. Values of the halocarbon global warming potential, HGWP,¹⁴ for CF₃CF=CHF (relative to CFC-11) can then be estimated using the following expression:

$$\begin{aligned} \text{HGWP}_{\text{CF}_{3}\text{CF}=\text{CHF}} = \left(\frac{\text{IF}_{\text{CF}_{3}\text{CF}=\text{CHF}}}{\text{IF}_{\text{CFC}-11}} \right) \left(\frac{\tau_{\text{CF}_{3}\text{CF}=\text{CHF}}M_{\text{CFC}-11}}{\tau_{\text{CFC}-11}M_{\text{CF}_{3}\text{CF}=\text{CHF}}} \right) \times \\ \left(\frac{1 - \exp(-t/\tau_{\text{CF}_{3}\text{CF}=\text{CHF}})}{1 - \exp(-t/\tau_{\text{CFC}-11})} \right) (\text{II}) \end{aligned}$$

where IF_{CF3CF=CHF}, IF_{CFC-11}, M_{CF3CF=CHF}, M_{CFC-11}, τ _{CF3CF=CHF}, and τ _{CFC-11} are the instantaneous forcings, molecular weights, and atmospheric lifetimes of CF₃CF=CHF and CFC-11, and *t* is the time horizon over which the forcing is integrated. Using

 τ (CF₃CF=CHF(Z)) = 18 days and τ _{CFC-11} = 45 years,¹⁵ we estimate that the HGWP of CF₃CF=CHF(Z) relative to CFC-11 is 3.1 \times 10⁻³ for a 20 year horizon and 1.2 \times 10⁻³ for a 100 year time horizon, respectively. Using τ (CF₃CF=CHF(E)) = 10 days and τ_{CFC-11} = 45 years,¹⁵ we estimate that the HGWP of CF₃CF=CHF(E) relative to CFC-11 is 1.7×10^{-3} for a 20 year horizon and 6.8×10^{-4} for a 100 year time horizon, respectively. Relative to CO₂, the GWP of CFC-11 on 20 and 100 year time horizons are 6730 and 4750.15 Therefore, relative to CO₂, the GWP of CF₃CF=CHF(Z) is approximately 21 for a 20 year horizon and 6 for a 100 year time horizon. Relative to CO₂, the GWP of CF₃CF=CHF(E) is approximately 11 for a 20 year horizon and 3 for a 100 year time horizon. CF₃CF= CHF has a negligible global warming potential and will not make any significant contribution to radiative forcing of climate change.

The atmospheric oxidation of CF₃CF=CHF gives CF₃C(O)F and HC(O)F in molar yields indistinguishable from 100%. CF₃C(O)F and HC(O)F will be removed from the atmosphere by hydrolysis giving CF₃C(O)OH and CO₂ + HF.¹⁶ CF₃C(O)-OH is a natural trace component of the oceanic environment,¹⁷ and any additional burden from CF₃CF=CHF oxidation will be negligible. Similarly, the additional burden of CO₂ and HF from CF₃CF=CHF oxidation will not be environmentally significant.

Acknowledgment. We thank INEOS Fluor for providing the high purity samples of the Z and E isomers of $CF_3CF=$ CHF used in this study.

References and Notes

(1) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.

(2) Farman, J. D.; Gardiner, B. G.; Shanklin, J. D. Nature 1985, 315, 207.

(3) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.

(4) Atkinson, R. J. Phys. Chem. Ref. Data 1989, Monograph 1.

(5) Søndergaard, R.; Nielsen, O. J.; Hurley, M. D.; Wallington, T. J.; Singh, R. Chem. Phys. Lett. **2007**, 443, 199.

(6) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667.

(7) Orkin, V. L.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. A 1997, 101, 9118.

(8) Sander, S. P.; Friedl, R. R.; Ravishankara, A. R.; Golden, D. M.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Keller-Rudek, H.; Finlayson-Pitts, B. J.; Wine, P. H.; Huie R. E.; Orkin V. L. *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15*, NASA JPL Publication 06-2, 2006.

(9) World Meteorological Organization. *Scientific Assessment of Ozone Depletion:* 2006, Geneva, 2007.

(10) Finlayson-Pitts, B. J.; Pitts, J. N., Jr. Chemistry of the Upper and Lower Atmosphere; Academic Press, London, 2000.

(11) Klecka, G.; Boethling, R.; Franklin, J.; Grady, L.; Howard, P. H.; Kannan, K.; Larson, R. J.; Mackay, D.; Muir, D.; van de Meent, D. *Evaluation of Persistence and Long-Range Transport of Organic Chemicals in the Environment*; SETAC Press: Pensacola, 2000.

(12) Pinnock, S.; Hurley, M. D.; Shine, K. P.; Wallington, T. J.; Smyth, T. J. J. Geophys. Res. 1995, 100, 23227.

(13) Ninomiya, Y.; Kawasaki, M.; Gushin, A.; Molina, L. T.; Molina, M.; Wallington, T. J. *Environ. Sci. Technol.* **2000**, *34*, 2973.

(14) Fisher, D. A.; Hales, C. H.; Wang, W.; Ko, M. K. W.; Sze, N. D. *Nature* **1990**, *344*, 513.

(15) Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D. W.; Haywood, J.; Lean, J.; Lowe, D. C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. *Changes in Atmospheric Constituents and in Radiative Forcing*. In *Climate Change 2007: The Physical Science Basis*; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., Eds.; Cambridge University Press: Cambridge (U.K.) and New York, 2007.

(16) Wallington, T. J.; Schneider, W. F.; Worsnop, D. R.; Nielsen, O. J.; Sehested, J.; DeBruyn, W.; Shorter, J. A. *Environ. Sci. Technol.* **1994**, 28, 320A.

(17) Frank, H.; Christoph, E. H.; Holm-Hansen, O.; Bullister, J. L. Environ. Sci. Technol. 2002, 36, 12.

(18) IUPAC, http://www.iupac-kinetic.ch.cam.ac.uk/, 2007.

(19) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. *Atmos. Chem. Phys. Discuss.* **2005**, *5*, 6295.

(20) Sulbaek Andersen, M. P.; Nielsen, O. J.; Toft, A.; Nakayama, T.; Matsumi, Y.; Waterland, R. L.; Buck, R. C.; Hurley, M. D.; Wallington,

T. J. J. Photochem. Photobiol. A: Chemistry 2005, 176, 124.
(21) Nielsen, O. J.; Javadi, M. S.; Sulbaek Andersen, M. P.; Hurley,

M. D.; Wallington, T. J.; Singh, R. Chem. Phys. Lett. 2007, 439, 18. (22) Mashino, M.; Ninomiya, Y.; Kawasaki, M.; Wallington, T. J.;

(22) Mashilo, M., Minolinya, T., Rawasari, M., Walington, T. J., Hurley, M. D. J. Phys. Chem. A **2000**, 104, 7255.

(23) McIlroy, A.; Tully, F. P. J. Phys. Chem. 1993, 97, 610.

(24) Dubey, M. K.; Hanisco, T. F.; Wennberg, P. O.; Anderson, J. G. Geophys. Res. Lett. 1996, 23, 321.

(25) Acerboni, G.; Beukes, J. A.; Jensen, N. R.; Hjorth, J.; Myhre, G.; Nielsen, C. J.; Sundet, J. K. *Atmos. Environ.* **2001**, *35*, 4113.

(26) Ezell, M. J.; Wang, W.; Ezell, A. A.; Soskin, G.; Finlayson-Pitts,
 B. J. Phys. Chem. Chem. Phys. 2002, 4, 5813.

(27) Kaiser, E. W.; Donahue, C. J.; Pala, I. R.; Wallington, T. J.; Hurley, M. D. J. Phys. Chem. A **2007**, 111, 1286.

(28) Grosjean, D.; Williams, E. L., II. Atmos. Environ., Part A 1992, 26, 1395.

(29) Atkinson, R. Chem. Rev. 1986, 86, 69.

(30) Atkinson, R.; Aschmann, S. M. Int. J. Chem. Kinet. 1984, 16, 1175.

(31) Atkinson, R.; Pitts, J. N., Jr. J. Chem. Phys. 1975, 63, 3591.

(32) Treacy, J.; El Hag, M.; O'Farrell, D.; Sidebottom, H. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 422.

(33) Greene, C. R.; Atkinson, R. Int. J. Chem. Kinet. 1992, 24, 803.

(34) Japar, S. M.; Wu, C. H.; Niki, H. J. Phys. Chem. 1974, 78, 2318.

(35) Cox, R. A.; Penkett, S. A. J. Chem. Soc., Faraday Trans. 1 1972, 68, 1735.